Once the metal is cleaned, treated, and painted, the strip is rewound into a coil size prescribed by the customer. From there, the coil is removed from the line and packaged for shipment or additional processing.
After the primer is applied and cured, then the metal strip enters the finish coat station where a topcoat is applied. Topcoats provide color, corrosion resistance, durability, flexibility and any other required physical properties. Like primers, the topcoat is cured using thermal cure ovens.
Oven
Coil coating ovens can range from 130 feet to 160 feet and will cure the coatings in 13 to 20 seconds.
During this stage, the strip enters the prime coat station whereby a primer is applied to the clean and treated metal. After the primer is applied, the metal strip travels through a thermal oven for curing. Primers are used to aid in paint adhesion, improve corrosion performance and enhance aesthetic and functional attributes of the topcoat.
S Wrap Coater
The S wrap coater design allows for primers and paints to be applied to the top and back side of the metal strip simultaneously in one continuous pass.
The cleaning and pretreating section of the coil coating process focuses on preparing the metal for painting. During the cleaning stage, dirt, debris, and oils are removed from the metal strip. From there, the metal enters the pretreatment section and/or a chemical coater whereby chemicals are applied to facilitate paint adhesion and enhance corrosion resistance.
Dried-In-Place
In this stage a chemical that provides enhanced corrosion performance is applied. This treatment can be chrome free if required.
The accumulator is a structure that adjusts up and down to store material, which makes continuous operation of the coil coating process possible. This accumulation will continue to feed the coil coating processes while the entry end has stopped for the stitching process. As much as 750 feet of metal can be collected.
In a city full of iconic landmarks, the Nashville International Airport adds to this list with the erection of an epic 40+ Ft. monument welcoming the 50,000 travelers who use this airport each day.
The monument displays Nashville’s three letter airport code, BNA (Berry Field Nashville) named for the airport’s first administrator Col Harry S Berry.
“As we celebrate a record-breaking fiscal year in 2022 with 18.4 million passengers, it’s important to have a front entrance that commands attention and welcomes our passengers every day,” said Doug Kreulen, president and CEO of BNA.
The monument will be lit at sunset every day, illuminating the entrance and shining bright with familiar blue and yellow brand colors.
The project was built on a hot-dip galvanized steel frame designed for a long life even while being exposed to the elements. Each of the 14’ tall letters on the frame were designed to be single-dip galvanized before being adorned with decorative steel panels. Hollow fabrications require small openings to ensure that all surfaces (internal and external) receive equal corrosion protection.
For this project the openings were precisely sized and located to help minimize drips and runs, thus producing a smooth, consistent HDG surface, essential for an aesthetically pleasing finish. The monument will be lit at sunset every day, illuminating the entrance to BNA with familiar the blue and yellow brand colors. On the back side of the monument, hinged access panels were installed to reach the internal components for inspections and repairs as needed.
In addition to the entrance monument, the airport plans to install smaller versions of the sign at other locations on the property. Thanks to the design team’s emphasis on the longevity and sustainability, hot-dip galvanizing was the optimum, maintenance free choice to protect this welcoming structure for decades to come.
Hot dip galvanizing is a sustainable method of protecting metal from corrosion. The process involves cleaning the metal, immersing it in a bath of molten zinc, and then allowing it to cool. This creates a protective layer of zinc on the surface of the metal, which acts as a barrier against corrosion.
One of the key benefits of hot dip galvanizing is its longevity. The zinc coating can last for decades, or even up to 100 years, with minimal maintenance required. This means that metal structures that have been hot dip galvanized will require less frequent replacement, reducing the overall environmental impact of these structures.
Another benefit of hot dip galvanizing is its recyclability. The zinc used in the process can be recycled and reused for further galvanizing, making it an environmentally friendly choice.
In addition, hot dip galvanizing does not use any toxic chemicals or produce any harmful emissions, making it a safe and clean process.
Overall, hot dip galvanizing is a sustainable method of protecting metal structures from corrosion, with a long lifespan, recyclability and no environmental impact. It is a great choice for any organization looking to maintain their environmental responsibility and reduce their carbon footprint.
AZZ is committed to providing products and services in an efficient and environmentally friendly manner. A cornerstone of our commitment is to provide products and services that support sustainable infrastructure development while striving to reduce the amount of raw materials, energy, and waste used during the manufacturing process. For more information regarding our commitment to sustainability, please visit our sustainability page.
Each company and charitable organization are recognized with a small feature on the campaign website and through a commemorative custom ornament, which adorns the trees at the VIP entrance to the NYSE.
AZZ is proud to highlight The AZZ Cares Foundation on its ornament. The ACF provides charitable support and assistance to AZZ employees and their families when an emergency, disaster, or personal hardship occurs.
Learn more about the foundation and find out how to give by clicking here.
When it comes to metal forming, fabricating, welding, and finishing, FABTECH 2022 is the only event that makes it possible to see it all together. This is where you’ll find the latest in manufacturing equipment. Discover innovations by application and industry. And see the advanced manufacturing solutions that bring new levels of productivity and efficiency to your operations. FABTECH gives you the tools, technology, and thought leadership to stay ahead of the competition.
AZZ Metal Coatings will again have a presence at the event, showcasing its leading hot-dip galvanizing and surface technologies capabilities at booth B4623 (exhibit hall B). Please plan to stop by and meet the team! Learn more about FABTECH 2022 at: https://www.fabtechexpo.com/
Best practice also recommends studs and bolted assemblies be sent to the galvanizer disassembled. Masking to prevent galvanizing threads on pipe or fittings is very difficult. The recommended practice is to clean and tap after galvanizing. Anchoring devices (such as threaded rods and anchor bolts) sometimes are specified to be galvanized in the threaded areas only or in the areas to be exposed above ground. This can be more expensive than galvanizing the complete unit because of the additional handling required. Complete galvanizing can be specified for items to be anchored in concrete.
Manufacturers of threaded parts recognize special procedures must be followed in their plants when certain items are to be galvanized. Following are some examples:
Low carbon bars are recommended since high carbon or high silicon cause a heavier, rougher galvanized coating on the threads.
Hot-formed heading or bending requires cleaning at the manufacturing plant to remove scale before threading. Otherwise, over-pickling of threads will result during scale removal.
Sharp manufacturing tools are mandatory. Ragged and torn threads open up in the pickling and galvanizing processes. Worn tools also increase bolt diameters. Frequent checking is necessary on long runs.
Standard sized threads are cut on the bolt, while standard sized nuts are retapped oversize after galvanizing.
The table below shows the recommended overtapping for nuts and interior threads as detailed in ASTM A563, Specification for Carbon and Alloy Steel Nuts. On threads over 1.5 inches (38 mm) it is often more practical, if design strength allows, to have the male thread cut 0.031″ (0.8 mm) undersize before galvanizing so a standard tap can be used on the nut.
Overtapping Guidelines for Nuts and Interior Threads
Design considerations courtesy of American Galvanizers Association. The AGA also has the publication, The Design of Products to be Hot-Dip Galvanized After Fabrication, available for download.
Sign up to receive press releases, presentations and additional investor information.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies. If essential cookies are disabled, the website may not function properly.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.